Climate Impacts, Risks, and Vulnerabilities *Implications for an uncertain climate future for SNWA/LVVWD*

NWRA Annual Conference

February 5, 2014 Keely Brooks

RISING TEMPERATURES

Humboldt

Elko

ASSESSMENT OBJECTIVES

Understand climate science

□ Identify assets at risk

D Prioritize

Method

Define Future Climate Scenarios & Time periods

□ Identify Assets & Threats

Evaluate Consequences

Rank Likelihood

Compare Scenario Risks

MODEL PROJECTIONS FOR LAS VEGAS A1B Emission Scenario, 2060

ASSESS ASSETS

- Colorado River Supply
- Las Vegas Valley Groundwater Supply
- CLWP Groundwater Supply
- Northern Resources
- SNWA Water Intake
- SNWA Water Treatment Systems
- LVVWD Distribution System

ASSESS THREATS

- Lake Mead
 - Low Lake Levels
 - Extreme Low Lake Levels
 - Lower Raw Water Quality
- Warmer Water Temperature
- Altered Runoff Timing
- Reduced Groundwater Recharge
- Reduced Snowpack

- Power Grid Performance
- Changes in Consumptive Water Use
- Flooding
- Increase in Invasive Species
- Wildfire

<u>ASSESSMENTS OF IMPACTS, RISKS</u> <u>AND VULNERABILITIES</u>

For Each Asset/Threat Pair:

Consequences (Low to Very High)

- Financial/Business Impacts
- Equipment/Facility Impacts
- Finished Water Quality and Quantity Impacts
- Environmental Impacts
- Public Health/Work Force Impacts
- Likelihood of Occurrence (Low to Very High)

Risk Matrix = Consequences x Likelihood of Occurrence

RISK MATRIX CATEGORIES

Risk Categories

ence	Very High	High	Very High	Very High	Maximum
Occurre	High	Medium	Medium	High	Very High
Likelihood of	Medium	Low	Medium	Medium	Very High
	Low	Low	Low	Medium	High
		Low	Medium	High	Very High
		Consequences			

Risk Matrix Numeric Values

Risk Matrix Categories translated into Numeric Values

RESULTS: RANGE IN RISK MATRIX VALUES

Risk Matrix Values range from a minimum value = 35 to a maximum value = 100

<u>CLIMATE CHANGE RISKS</u> <u>2035 HOT AND DRY</u>

Category	Risk Matrix Values	
Maximum Risk	100	
Very High	60, 75	
High	50, 55	
Medium	40, 45	
Low	35, 37	

Very High			
Risk Matrix			
Asset	Threat	Value	
Colorado River Supply	Extreme low lake (<1000')	60	
SNWA Intake System	Extreme low lake (<1000')	60	

High			
		Risk Matrix	
Asset	Threat	Value	
Colorado River Supply	Low lake levels (1075-1000')	55	
LVVWD Distribution System	Warmer Water Temperatures	55	
SNWA Intake System	Poor Power Grid Performance	55	
SNWA Treatment System	Poor Power Grid Performance	55	
SNWA Treatment System	Reduced water quality	55	
SNWA Treatment System	Warmer Water Temperatures	55	
Northern Resources	Poor Power Grid Performance	55	

····Cului				
· · ·		Risk Matrix		
Asset	Threat	Value		
SNWA Intake System	Invasive Species	45		
	Low lake levels (1075-			
SNWA Intake System	1000')	45		
SNWA Treatment System	High flow events	45		
SNWA Treatment System	Invasive Species	45		
Northern Resources	Invasive Species	45		
Northern Resources	Wildfire	45		
LVVWD Distribution System	High flow events	40		
	Poor Power Grid			
LVVWD Distribution System	Performance	40		

Medium

	Low	
Asset	Threat	Risk Matrix Value
LVVWD Distribution System	Changes in residential use	35
SNWA Treatment System	Changes in residential use	35

<u>CLIMATE CHANGE RISKS</u> <u>2060 HOT AND DRY</u>

Maximum			
Asset	Threat	Risk Matrix Value	
SNWA Intake System	Poor Power Grid Performance	100	
SNWA Treatment System	Poor Power Grid Performance	100	
SNWA Treatment System	Reduced water quality	100	
SNWA Treatment System	Warmer Water Temperatures	100	

Very High			
Asset	Threat	Risk Matrix Value	
Colorado River Supply	Extreme low lake (<1000')	75	
Colorado River Supply	Low lake levels (1075-1000')	75	
LVVWD Distribution			
System	Warmer Water Temperatures	75	
Northern Resources	Poor Power Grid Performance	75	
SNWA Intake System	Extreme low lake (<1000')	75	
SNWA Intake System	Low lake levels (1075-1000')	75	
Clark LWP GW	Altered Runoff Timing	60	
Clark LWP GW	Reduced snowpack	60	
Northern Resources	Invasive Species	60	
Northern Resources	Wildfire	60	
SNWA Intake System	Invasive Species	60	
SNWA Treatment System	Invasive Species	60	

Category	Risk Matrix
	values
Maximum Risk	100
Very High	60, 75
High	50, 55
Medium	40, 45
Low	35, 37

i iigii				
Asset	Threat	Risk Matrix Value		
as Vegas Valley GW upply	Reduced groundwater recharge	55		
VVWD Distribution ystem	Poor Power Grid Performance	50		

Ligh

Medium
Throat

Risk Matrix

Asset	Inreat	Value
Las Vegas Valley GW		
Supply	Changes in residential use	45
SNWA Treatment System	High flow events	45
Clark LWP GW	Reduced groundwater recharge	45
LVVWD Distribution		
System	Changes in residential use	40
LVVWD Distribution		
System	High flow events	40
SNWA Treatment System	Changes in residential use	40

SUMMARY

- If climate warms according to the Hot and Dry scenario, SNWA/LVVWD will have significant risk from climate impacts.
- Risk increases from 2035 to 2060 in all scenarios if no adaptation measures are put in place.
- To be risk averse, adaptation planning should continue assuming the more pessimistic Hot and Dry climate scenario.

SUMMARY

Adaptation Planning should focus on reducing the risks from

- <u>Extreme Low Lake Levels</u>, leading to impacts on:
 - Colorado River Supply,
 - SNWA Water Intake System, and
- <u>Reduced Water Quality</u>, from a rise in nutrients in:
 - SNWA Water Treatment System
- <u>Warmer Water Temperatures</u>, leading to the formation of THMs in:
 - LVVWD Distribution System
 - SNWA Water Treatment System
- <u>Poor Power Grid Reliability, affecting</u>:
 - SNWA Water Intake System
 - SNWA Water Treatment System
 - Northern Resources

NEXT STEPS

• Adaptation Planning Process

 Target Next Water Resource Plan Review/Update Process to Incorporate Climate Change

QUESTIONS?

File View

Administration Persources Process Steps

Previous

4

Climate Resilience Evaluation and Awareness Tool

eat 🔐 🤌	🜔 🥳 Setup 😤 Threats	Assets 声 Base	line Resilience	daptation Results	ts						
ree A	daptation Planning Summary Adaptive M	easures Adaptation Pa	advages Review Packages								
ets	Adaptation Planni	ng Summary-	ed in the Adaptation Planning	tab, and will be populated as	you work	through 1	he steps in th	his tab. Lists and detail	ls of packages are provided wi	th summary statistics rel	ated to risk reduction
Reservoir Locatio (>	and costs of implementation. The grap	h to the right provides a	visual comparison of package	e costs and benefits. A summa	ry of ada	otive mea:	sures defined	l by category is also sh	own below.		
CREAT Categories	Adaptation Packages								Selected Package		
Natural Resource	Package Name		Package ID	Description					# of Assigned Measures	4	
Surface wi	🕞 Modernization Plan		Moder					Annualized Costs	\$560,000		
	Adaptive Measure	Ca	ap. Costs	Op. Costs	2015	2035	Total RRU	Js	Capital Costs	\$2,750,000	
	Combined sewer overflow st	rategies \$2	5,000	\$100,000	3.5	10.9	30.8				
	Energy efficiency improveme	nts \$2	:00,000	\$10,000	1.5	4.2	11.2		Risk Reduction Units	62.0	
	Green infrastructure in comn	nunity \$2	5,000	\$25,000	0.0	0.0	12.8		RRUs displayed are the t	otal for all locations,	
	Increased capacity – wastev water	vater / storm \$2	,500,000	\$150,000	0.0	0.9	7.2		scenarios, and time peri	ion Units by Adapta	tion Package
	Storm Protection		Storm						60.0		
	Adaptive Measure	Ca	ap. Costs	Op. Costs	2015	2035	Total RRU	Js			
•	Green infrastructure at facili	ty \$2	50,000	\$10,000	0.0	0.0	11.3		50.0		
	Sea-level rise and storm surg	ge models \$5	0,000	\$2,500	0.0	5.0	12.5				
8		\$1	0,000	\$25,000	0.0	3.0	6.8				
	Sump pumps (WWTP)	\$1	5,000	\$1,000	0.0	5.0	22.5		40.0		
			WWTP						L. L		
	Adaptive Measure	Ca	ap. Costs	Op. Costs	2015	2035	Total RRU	Js	- 30.0		
	Adaptive Measure Summary								Red		
						Existi	ng	Potential	A IN 20.0		
	Expanded Operating Flexibility	Options to expan operating parame	d operational flexibility to ters driven by the climate	meet the changed threat.		3		2	≡ 10.0		
	Expanded Capacity	Some systems car without making la	n operate beyond design arge changes to the syste	or current capacity m.		2		4	.0		
	Alternative Strategies	After the existing	system reaches the limit	of its capacity to absorb		2	Í	3	Moder	Storm	WWTP

<u>RISK</u>

CONSEQUENCES X LIKELIHOOD OF OCCURRENCE

SOUTHERN NEVADA WATER AUTHORITY®

ADAPTATION PLANNING

Asset/Threat Pair Addressed	Name	Description
Water Supply/Low Lake	Additional Demand Management Locally	Demand management to achieve beyond existing SNWA conservation goals to counteract the effects of climate change and maintain our GPCD goal (currently at 199).
Water Supply/Low Lake	Additional Water Resource Acquisition, beyond CLWP GWP	To include permitting additional groundwater applications, purchase of existing water rights, etc. (Lake lowers to 1,050 feet)
Water Supply/Low Lake	CRBS options for CR System Benefit	Work towards utilizing collaborative arrangement for development of viable options through the CRBS process to resolve Colorado River imbalances.
Water Supply/Low Lake	Interim Colorado River Resources	Continue to bank Intentionally Created Surplus (ICS) on the River; continue to pursue banking NV's unused apportionment on the River; conjunctive management of resources.
Water Supply/Low Lake	CRBS options for NV Benefit	Pursue the permanent Colorado River Augmentation options for Nevada.
Water Supply/Low Lake	Mobile barge to draw water	Potential short term option only / only if pumping solution via through intake #3 is not possible.
Water Supply/Low Lake	Replacement of IPS#1 to maintain desired pumping capacity.	Excavation and installation of pumping units [at Intake site] to provide pumping capacity between lake elevation 900 and 1000 ft
Water Supply/Low Lake	Optimize Well Use and Other Sources of Supply (MX5) and Northern Resource System	Use alternate water sources, already developed, to increase resiliency of water supply to shortages in Colorado River Supply. Managing levels of withdrawal/use and blending to preserve water quality.
Water Supply/Low Lake	Continue Leakage Reduction Program	Advance the leak detection efforts using Asset Management protocol
Water Supply/Low Lake	Colorado River System model improvement	Support continued development of Colorado River System models to further enhance understanding of climate change impacts on Colorado River water supply and Lake Mead elevations.

WEATHER RELATED POWER OUTAGES

Source: National Wildlife Federation, 2011, based on data from North American Electric Reliability Corporation and the U.S. Energy Information Administration.

RISK MATRIX NUMERIC ASSIGNMENTS

Occurrence	Very High High	50 40	60 45	75 55	100 75
Likelihood of	Medium	37	40	45	60
	Low	35	37	40	50
		Low	Medium	High	Very High
			Conseq	uences	

Risk Matrix = Consequences x Likelihood of Occurrence

CRITERIA TO ASSESS CONSEQUENCES

Category	Business Impacts	Operational/ Equipment Damage	Finished Water Impacts	Environmental Impacts	Public Health/Work Force Impact
Description	Revenue or operating income loss	Cost of replacing service or equipment	Quantity and Quality	Resource loss and compliance with environmental regulations	Duration and spatial extent of impacts
Very High	> \$5M	> \$5M	>> 20 KAF loss for >3+ years	Long term regulatory non-compliance	Long term and widespread
High	\$5M-1M	\$5M-1M	20 KAF loss for <3 years	Persistent environmental damage - may incur regulatory action	Short term and localized
Medium	\$100k-\$1M	\$100k-\$1M	< 20 KAF	Short-term -compliance can be quickly restored	Minor public health impacts
Low	< \$100k	< \$100k	Minor, short term	No and low impact	No and low impact

LIKELIHOOD OF THREATS

	Hot	& Dry	Central		Warm & Wet	
	Threat L	Threat Likelihood		kelihood	Threat Likelihood	
Threats	2035	2060	2035	2060	2035	2060
Lower lake levels (1000'-1075')	High	Very High	Medium	High	Low	Medium
Extreme low lake level (below 1000')	Medium	High	Low	Medium	Low	Low
Poor power grid performance	High	Very High	Medium	High	Medium	High
Warmer water temperatures	High	Very High	Medium	High	Medium	High
Reduced water quality	High	Very High	Medium	High	Medium	High
Changes in consumptive use	NA	High	NA	Medium	NA	High
High flow events	High	High	High	High	High	High
Invasive species	High	Very High	Medium	High	Low	Medium
Reduced groundwater recharge (both CLWP and Las Vegas Valley	NA	High	NA	High	NA	Medium
Runoff timing	High	Very High	Medium	High	Low	Medium
Reduced snowpack	High	Very High	Medium	High	Low	Medium
Wildfire	High	Very High	Medium	High	Low	Medium

DESCRIPTION OF LEVEL OF LIKELIHOOD

Likelihood of Occurrence Levels	Description ¹
Very High	Occurrence within the time frame is expected
High	Occurrence within the time frame is likely
Medium	Occurrence within the time frame is less likely
Low	Possible, but unlikely to occur within the time frame.

¹Ranking levels are subjective determinations and are not explicitly based on percent likelihood.

CLIMATE CHANGE PROGRAM -**NATIONAL ACTIVITIES**

AMWA ightarrow

AWWA ightarrow

WRF

WUCA

Water Utility Climate Alliance

Mission Statement

The Water Utility Climate Alliances provides leadership in assessing and adapting to the potential effects of climate change through collaborative action. We seek to enhance the usefulness of climate science for the adaptation community and improve water management decision-making in the face of climate uncertainty.

<u>CLIMATE CHANGE PROGRAM –</u> <u>REGIONAL AND LOCAL ACTIVITIES</u>

 Colorado River Supply and Demand Study

• Las Vegas Valley

- UNLV/DRI
- Southern Nevada Regional Planning Coalition

• SNWA

- Vulnerability Assessment
- Adaptation Planning
- Water Resource Plan Update

