# Comparing Field-Estimated & Simulated Transmissivity

2014 NWRA Annual Conference, Las Vegas, NV Technical Session D: Innovations Thursday, February 6, 2014



Keith J Halford Carson City, NV

## Transmissivity (T)

- Affects predicted drawdown & capture from groundwater-flow models
  - Uncertainty of **T** directly affects predictions
  - Specific yield also significant, but well defined
- Comprehensible quantity
  - Collapses to mappable quantities
  - Vertical variations primarily distracts
- Knowable quantity
  - Transmissivity relatively certain
  - Volume investigated is nebulous quantity



#### **Aquifer Tests**

- Water pumped
- Rate & volume known
- Water levels decline
- Transmissivity related to rate of decline
  - Increases as slope decreases
- "Direct" measure of hydraulic property





#### **Grid Refinement**



- Field volume fits in old cells, Easy comparison
- Not anymore, comparison takes work



## **Compare K**



#### • K = T / b, No worries — Not quite

- Mean K contradicts expected order
- Units hydraulically similar
- Limits span 4 to 7 orders of magnitude



## **K Limits in Calibration**

- Hydrogeologic units defined
- Ranges specified
   By unit
  - Min-max = 95%
- Equal probability within ranges
- 0 probability outside of ranges





#### **K Limits on Transmissivity**



Transmissivity PDFs from K limits

-Square wave for single hydrogeologic unit

-All distributions span several orders of magnitude

-High transmissivity hydrogeologic units control distribution



#### **Transmissivity Constrains**



Hydraulic conductivity limits

- -Site specific comparisons are lost
- -Transmissivity bounds are biased high

Need to preserve aquifer-test results—Not happening



## **Compare Transmissivity**

- Model, all is known
  - Hyd. Properties
  - Dimensions
- Model transmissivity
  - Drawdown,
     Volume investigated
  - Average laterally
  - Sum vertically
- Consistent & less wrong, even w/ fuzz





## **T-COMP**

- T-COMP, suite of 3 FORTRAN codes
- T-COMP\_Create,
  - Define volume with mini MODFLOW model
- T-COMP\_Extract,
  - Identify regional model cells in volume
- T-COMP\_Simulated,
  - Sample simulated transmissivity to calibrate
- Directly calibrating to aquifer-test results possible with T-COMP programs



#### **T-COMP\_Create**





#### **T-COMP\_Extract**



- All fractions reduced where full layer thickness not investigated
- Write site name, number of nodes, node number, & fraction

SGS

## **T-COMP\_Simulated**

- Read transmissivities
   from cell conductances
- Sum transmissivities times fraction for all contributing cells
- Write simulated transmissivity & log(T)
- Revise if things change drastically
- Significant variability can exist in sample





### **Pahute Mesa-Oasis Valley**

- Potential radionuclide
   transport of interest
- Define Oasis Valley groundwater catchment
- No-flow boundary
- Test data consistency with 1-layer flow model

   PMOV model
- Constrain simulated transmissivity w/ T\_COMP, Not K-limits





### **PMOV Calibration**

- Reduce differences

   Water levels in wells
   Water table in ET area
   Transmissivity in circles
- Adjust knobs
  - Recharge points &
  - Transmissivity points
- Constrain with wishes
- Estimate transmissivity
   & simulate water levels



#### **Goodness of Fit**

- RMS-water levels = 24 ft
- Water-level scatter OK
- ET scatter shows structural error
- Field & simulated transmissivities agree to a factor of 5
- Some bias for low T tests





#### **Remove Transmissivity**

- Effect of transmissivity observations unknown
- Remove & recalibrate,
   RMS = 15 ft, NO-T model
- General features remain
- Low & high T transpose
- Transmissivity more smoothed
  - Wishes control outcome
- Simulated transmissivities
  - Low T ignored more



FEET SQUARED PER DAY



#### **Results Affected**

- Differences in transmissivity affect transport
- Compare pathlines
  - Thickness\*porosity = 30 ft
  - T & recharge differ
- Paths differ by 3 miles
- Travel times differ
  - WITH ~ 600 years
  - -NO ~ 1,600 years
- Affects drawdown & spring depletion also





## CONCLUSIONS

- Hydraulic-conductivity limits
  - Splintering hydraulically similar units harmful
  - Biases PDF towards greater transmissivities
  - Ignores site-specific, aquifer-test results
- Transmissivity observations
  - Can define volume of investigation
  - Minimal data requirements
  - Some subjectivity, but less wrong than ignorance
- Critically affects results
  - Greatly affects monitoring locations
  - Not including weakens results of interest; all scales

