San Luis Project: Process Optimization

Stephen Rogers, CWP; Jason Kerstiens, PE; and William Lyle

Nevada Water Resources Association Annual Conference

February 6, 2014

Optimization and sustainability

- Optimized facilities are more efficient: reducing energy demand and GHG emissions, reducing chemical demands, and lowering opex
- Optimized facilities may obviate the requirement for expansion or new facilities, thus reducing future capex
- Optimized facilities assure stakeholders that water management activities are focused on reducing impacts to the environment, while minimizing the consumption of energy and chemical resources, all at the lowest cost

Optimization: general

• An evaluation of the operating facility to determine the factors limiting the facility from achieving its desired performance.

Example performance metrics:

- Flow rate of discharge water
- Compliance with discharge standards
- Reliability of service
- Maintenance of groundwater level
- Compliance with future requirements (growth, regulation)
- Result of examination of these operational processes is to identify the factors, correct the deficiencies, and plan for future improvements
- Factors include equipment, design, personnel and process limitations

Optimization: Design-related factors

Evaluate the design criteria of unit processes to determine conformance with performance requirements.

Examples:

- insufficient hydraulic residence time to achieve disinfection
- insufficient equipment units to provide required redundancy
- insufficient storage to provide required volume
- cavitation from insufficient NPSHa
- incorrect worst-case assumptions during design (e.g., temperature)

Optimization: Process-related factors

- Evaluate how well existing processes achieve performance requirements
- Processes include physical, chemical and/or biological processes
- Processes can include business processes such as standard and emergency operating procedures, information management systems (EAM/CMMS, LIMS)

Example: Tracer Testing

 use inorganic salt to identify short circuits. Denver Potable Reuse Plant – tested each basin, each process, to optimize treatment and to determine sample time for plant challenge testing. Testing results were used to improve residence times, reaction conditions.

Example: Emergency Procedures

Absence of emergency operating procedure for stand-by generator.
Power failure at lift station resulted in raw sewage overflow.

Optimization: Equipment-related factors

Inventory and assess condition of equipment

- Redundant units?
- Condition assessment plug into asset management program
- Hydraulic limitations
 - worn pump impeller cannot deliver required pressure/volume,
 - insufficient NPSHa
 - scaling in pipelines limiting hydraulic capacity
- Short-circuiting due to out-of-level clarifier weirs

Optimization: Personnel-related factors

Evaluate staffing requirements in perspective of current/future performance requirements

- Succession planning
- Hire
- Train
- Automation
- Outsource

San Luis Project

- Gold mine in closure, unpermitted surface and groundwater discharges, Notice Of Violation/Cease & Desist order, antidegradation standards applied to receiving stream
- Water Treatment Plant sourced as Design/Build/Operate, reverse osmosis selected technology – never performed as designed
- Owner wanted to take <u>adverse</u> possession of WTP: no staff trained to operate or maintain advanced treatment processes. Because of litigation, it was necessary to demonstrate that the client could operate the WTP according to its design intent.
- Performance requirements: Meet required discharge flow rate (350 gpm), and lower site groundwater levels, using untrained and inexperienced staff
 - Operator in Responsible Charge
 - Train new staff (ex-mining employees)
 - Identify and correct process limitations

San Luis Project

Original design:

P = permeate

Design-related factors

- Hydraulic insufficient NPSHa, suction lift
- Filters incorrect media (uniform, spherical)
- RO poor and declining system recovery, *temperature effects*, materials of construction, incorrect membranes for process chemistry

Equipment-related factors

- Open Drip Proof motors in washdown area
- Flat-bottomed tanks instead of slope-bottomed
- "Clarifier" underdrain could not convey gypsum sludge, centrifuge could not receive consistent feed
- Grain augers for conveying dry chemicals (ineffective for powder, adequate for granular material)

RO Influent Temperature, Dec. through Apr.

Temperature Correction Factor

Personnel-related factors

- "Mill Dinks" one electrician, one equipment operator, one with some college (one introductory chemistry course)
- No training in mathematics, chemistry, hydraulics
- No treatment certification

Process-related factors

No concentrate disposal

Improvements

PART 1:

- Crash training course two days sequestered in a motel conference room: math, chemistry, hydraulics (personnel)
- Fabricated lime eductor feed system (equipment)
- Submersible pumps in sedimentation basins (design)
- Weekly updates of RO setpoints in response to constantly changing chemistry (operating processes)
- Concentrate disposal to tailings impoundment land application system (process)
- Replace filter media (design)

Improvements

PART 2:

- Revise precipitation process to single-stage lime/soda ash (process)
- Increase RO system recovery from 65 percent to 90 percent via concentrate recycle (design, process)
- Install RO bypass line (flow paced based on on-line fluoride analyzer) (design, process)

Recovery

I = influent P = permeate C = concentrate R = recycle

Revised process:

San Luis Project

Benefits

- Stable chemistry, smooth operation
- Increased throughput allowed intermittent operation (from 7 days/week to 4 days/week)
- Staff reduction (by 40%)
- Reduced energy use (by > 40%)

- Reduced chemical use (by > 75%)
- Reduced disposal volume (by 50%)
- Improved chemical feed control
- Extended RO membrane life (>13 years, and still going)
- Improved overall WTP recovery from 58% to 94%

