

Evaluation of controllable and uncontrollable drivers on residential water demand: An application to the Las Vegas area

Kimberly Rollins, Associate Professor in Economics, University of Nevada, Reno

Elena Tchigriaeva, PhD Student in Economics, University of Nevada, Reno

Corey Lott, PhD Student in Economics, University of California, Santa Barbara

NWRA, 2014 Annual Conference February 6th, 2014

ACKNOWLEDGMENTS

This work has been sponsored by Nevada EPSCoR.

We are grateful to individuals at Southern Nevada Water Authority for providing information and feedback.

OUTLINE

- 1. Factors affecting residential water demand
 - i. Uncontrollable by utility: exogenous factors
 - ii. Controllable by utility: factors that alter behavior of customers through conservation policies
- 2. Model formulation
- 3. Descriptions of variables
- 3. Data sources
- 4. Results and Projections
- 5. Conclusion

WATER DEMAND DRIVERS AFFECT CUSTOMER DECISIONS AND BEHAVIOR

Residential Water Demand

	 Avg Temperature Avg Wind Speed Precipitation Days 	Exogenous, uncontrollable			
	SeasonalityEconomic trends				
	Household IncomeHousehold Size				
K	Marginal Price	Price Policies	Controllable: These		
	 Turf Restriction Regulation 	Non-	Controllable: These drivers influence water through		
	 Turf Area Treed Area Non Irrigated Area Swimming pools 	Price Policies	policies		

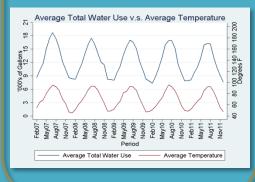
We explicitly model the effects of these drivers on customers' behavior

- Use observed data to predict monthly water use as a function of variables that represent controllable and uncontrollable drivers (next slides)
- Observations over time to account for seasonality and economic trends
- Observations at customer level to account for household differences
- Uncontrollable drivers: account for how exogenous effects influence how customers respond to controllable drivers (policies).
- A random effects model accounts for heterogeneity of households and time invariant variables
- Use estimated model to:
 - predict how customers will respond to multiple policy tools, as represented by systematic changes in controllable drivers
 - predict how responses to policies vary with systemic changes in uncontrollable drivers.

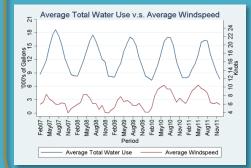
Random Effect Model

For a given household i, water demand in month t can be expressed as

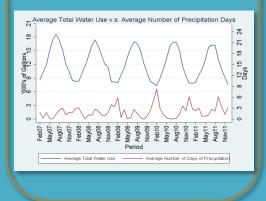
$y_{it} = \hat{p}_{it}\beta_p + \hat{d}_{it}\beta_d + x'_i\beta_x + c'_t\beta_c + m'_t\beta_m + \varepsilon_{it}$ where $\varepsilon_{it} = \mu_i + e_{it}$, and	(1)	
$p_{it} = b'_i \beta_{b_{it}} + x'_i \beta_x + c'_t \beta_c + m'_t \beta_m + \varepsilon_{it1}$	(2)	
$d_{it} = b'_i \beta_{b_{it}} + x'_i \beta_x + c'_t \beta_c + m'_t \beta_m + \varepsilon_{it2}$	(3)	


Variables:

 y_{it} - household monthly water use in 1000s of gallons p_{it} - estimated marginal price associated with household i and month t d_{it} - estimated difference variable associated with household i and month t x_i - is a k by 1 vector of household characteristics including landscape characteristics c_t - is a l by 1 vector of climate indicators m_t - is a n by 1 vector of period indicator variables corresponding to time period t, b_i is a k by 1 vector of water bill characteristics μ_i - a household-specific random error e_{it} - regression random error β -terms are coefficients corresponding to their associated regressors


VARIABLES TO REPRESENT UNCONTROLLABLE (EXOGENOUS) DRIVERS

Climate Variables account for weather parameters as perceived and acted on by consumers


Average Daily Temperature (F)

Average Daily Wind Speed (Kn)

Number of Precipitation days

VARIABLES TO REPRESENT UNCONTROLLABLE (EXOGENOUS) DRIVERS

Household Variables: account for unique features of households

59 Period Variables

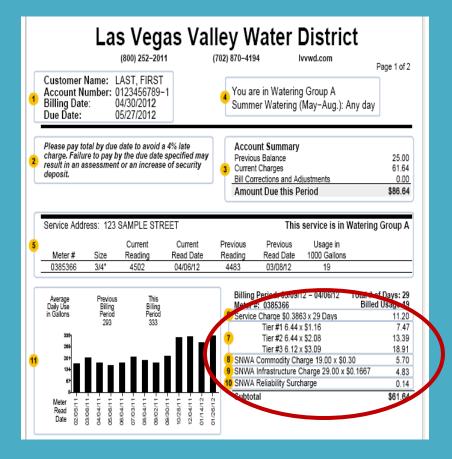
account for seasonality and economic trends (dummy variables)

Income (1,000 \$ dollars)

Proxy: Appraised House Value times 0.025 (Nieswiadomy and Molina, 1988) Billing days in month (# of days) Varies across sample Household Size

Proxy: Number of bedrooms

VARIABLES TO REPRESENT CONTROLLABLE DRIVERS: PRICE POLICIES


Price Variables account for block-rate structure as well as household-specific features

Marginal price, \$

Price per unit of water at the maximum block used for each billing period per household

Difference, \$

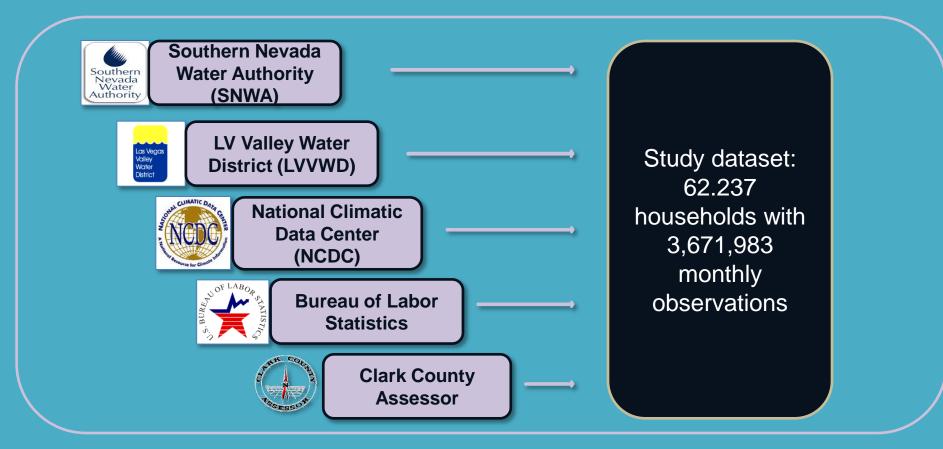
The difference between actual bill and bill at the marginal price; must be used with marginal price

VARIABLES TO REPRESENT CONTROLLABLE DRIVERS: NON-PRICE POLICIES

Involuntary conservation policy:

Turf Restriction Regulation for new houses in 2003 (dummy variable)

Landscape Variables – account for unique features of households (from Judy Brandt's GIS imaging, SNWA)


Voluntary conservation policy:

Landscape variables represent expected effects from conservation policies that target landscaping. (Voluntary conservation program data is not used directly because of an endogeneity problem - this is future work)

SHAPING DATASET:

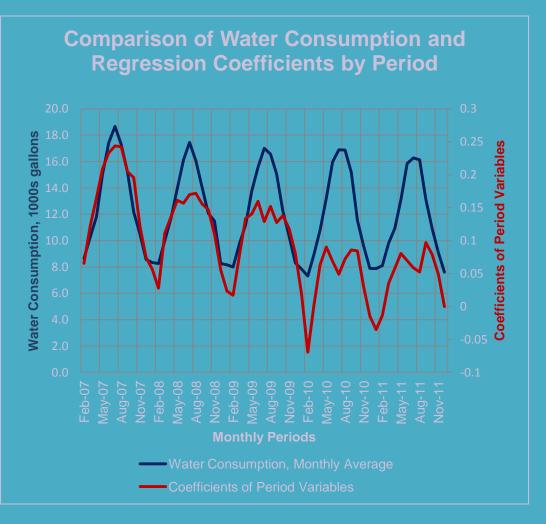
DATA WERE OBTAINED FROM FIVE NATIONAL AND REGIONAL AGENCIES . THIS UNIQUE, DISAGGREGATED DATASET INCLUDES ABOUT 40% OF SINGLE-FAMILY HOUSEHOLDS OF LAS VEGAS WITH UNINTERRUPTED WATER HISTORY FROM 2007 TO 2011

Results

As expected:

- ✓ Difference: opposite in sign to income, thus negative (Nordin 1976)
- ✓ Marginal price: negative (law of demand)
- Water Demand Increases (+) with Bill Days, Household Size, Income, Temperature, Wind Speed, Turf, Trees, and Pool presence
- Water Demand Decreases (-) with Precipitation, Non-Irrigated area, and Turf restriction regulation implementation

Therefore, for a policy that targets replacing turf with trees :


 An estimated 55% water savings over entire sample of residential customers

Variables	Coefficient	Std. Error			
		0.00148**			
Difference	-0.0203	*			
		0.01221**			
Marginal price	-0.1356	*			
		0.00054**			
Days	0.0274	*			
		0.00188**			
Household size	0.0869	*			
Income	0.00004	1 E-06***			
		0.00018**			
Avg, Temperature	0.0090	*			
		0.00018**			
Days of Precipitation	-0.0082	*			
		0.00041**			
Avg, Wind speed	0.0153	*			
Size of Turf	0.00028	6 E-06***			
Size of Trees	0.00012	2 E-06***			
New Indexets of August	0 00000				
** Significance level of 5%					
*** Significance level of 1%					
R-sq overall = 0.4777					
		0.00370			
Turf Restriction Policy	-0.0906	*			
Constant	0.1240	0.04702**			

Time Trends: Period Dummy Variables

Estimated Coefficients:

- Are in accordance with seasonal changes (summer ups and winter downs)
- Clearly reflect a recession effect (decrease since 2008)

ELASTICITIES

Elasticity measures the change in consumer water demanded as a result of a change in an explanatory variable (price, income,

temperature ...) For example:

Price elasticity = slope* quantity of water

Important: Price elasticity is not constant – it increases with increasing price!

Why elasticity is important?

Because elasticity is:

✓ Unit free

- ✓ Easily interpreted
- Comparable across studies
- Effective for exploring different scenarios

RESULTS – ELASTICITY (FOR SOME REGRESSORS OF INTEREST)

- Water demand is inelastic for all presented regressors, but is responsive to change
- Demand is most responsive to temperature among noncontrollable variables
- Demand is most responsive to price among controllable variables
- Price elasticity is similar to findings in other U.S. studies, confirming similar consumer behavior toward water use

Variables	Elasticity for mean of factor	Elasticity for median of factor	
Marginal price	-0.315	-0.285	
Family size	0.295	0.261	
Size of Turf (skewed right)	0.057	0.006	
Size of Trees	0.168	0.137	
Income	0.145	0.134	
Avg, Temperature	0.639	0.622	
Days of Precipitation	-0.017	-0.016	
Avg, Wind speed	0.104	0.098	

* Increase of price by 10% leads to decrease in water demand by 3.15%

EXAMPLE OF POLICY SCENARIOS: WATER DEMAND PROJECTIONS USING ELASTICITIES

Using elasticities, it is possible to create alternative policy scenarios

Analysis of Elasticities of Manageable Variables: Price and Turf Size								
1			1st Portfolio (20% of Price Increase and 30% of Turf		2nd portfolio (30% Price increase and 20% of			
		Decrease)		Turf Decrease)				
Percentiles of	Price, \$	Turf,	20% price	30% turf decrease	Sum of water	30% price	20% turf decrease	Sum of water
explanatory		sqft	increase		decrease, %	increase		decrease, %
variables								
Min	1.1	0	-2.98 %	0 %	-2.98 %	-4.48 %	0%	-4.48 %
10%	1.18	0	-3.20 %	0 %	-3.20 %	-4.80 %	0 %	-4.80 %
25%	1.91	0	-5.18%	0 %	-5.18%	-7.77 %	0 %	-7.77 %
50%								
(Median)	2.1	20	-5.70 %	-0.17 %	-5.86 %	-8.55 %	-0.11 %	-8.66 %
Mean	2.33	202	-6.32 %	-1.70 %	-8.02 %	-9.48 %	-1.13 %	-10.61 %
75%	2.99	249	-8.11 %	-2.09 %	-10.20 %	-12.17 %	-1.39 %	-13.56 %
90%	3.1	643	-8.41 %	-5.40 %	-13.81 %	-12.61 %	-3.60 %	-16.21 %
Max	4.52	8115	-12.26 %	-68.14 %	80.40%	-18.39 %	-45.43 %	63.82 %
				Average,			Average,	
Coeficients	-0.1211	0.0003		%	-16.21 %		%	16.24 %

We see that 1st and 2nd scenarios give on average the same percentage of decreased water use, but effects differ through the price and turf size groups (2nd scenario is more evenly distributed among groups)

CONCLUSIONS

- 1. Modeling approach relies on use of a fully disaggregated data set
- The model estimates are robust and support current empirical as well as theoretical knowledge of water demand
- 3. Results used to create tools for water demand forecasting and targeting the most sensitive groups

QUESTIONS?